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Abstract

The objective of this work is to present a stability analysis for elastic columns under the influence of
periodically varying follower forces whose orientation is retarded, i.e., depends on the position of the
system at a previous time. One- and two-degree-of-freedom (dof) discretized systems under the
simultaneous influence of both parametric excitation and time-delay, whose effects on such systems have
previously been only considered separately, are studied. By employing an orthogonal polynomial
approximation, the infinite-dimensional Floquet transition matrix associated with the time-periodic
differential-delay system is approximated. The stability criteria that all the eigenvalues (Floquet multipliers)
of this matrix must lie within the unit circle is then applied. The stability charts for different combinations
of the remaining system parameters are shown, and the previously reported results for the special cases
where either the parametric excitation or the time-delay vanishes are verified. Two cases, when the
parametric forcing period is equal to or twice the delay period are taken into consideration in this work.
For special cases of the single dof system, the numerical stability plots are verified by considering the
analytical expressions for the corresponding stability boundaries for an analogous delayed Mathieu
equation.
r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The stability analysis of elastic systems subjected to nonconservative follower forces is
of great interest in various engineering fields. After Beck’s well-known paper in 1952
which analyzed what later became known as Beck’s column [1], several important monographs
and papers revisited this important topic [2–4]. Several properties of such systems have
been identified, including the possibility of failure due to flutter instability [4] and the
potentially destabilizing effect of damping [5], which are not present in conservative elastic
systems in which only divergence instability is present and damping is a stabilizing effect. The fact
that stability analyses for nonconservative systems must necessarily take the dynamics of such
systems into account is an additional complication which conservative systems that can be
analyzed statically do not exhibit. Using the modern language of dynamical systems, a nonlinear
nonconservative system may experience a Hopf bifurcation (dynamic instability) in addition to a
saddle–node bifurcation (static instability) [6]. Furthermore, not all nonconservative systems may
exhibit flutter or Hopf bifurcation. Husseyin [7] classifies such systems as either pseudo-
conservative or circulatory, depending on whether the asymmetric stiffness matrix can be
symmetrized through an appropriate transformation. If it cannot, then it is circulatory and may
experience flutter [7].
More recently, the analysis of elastic systems subjected to nonconservative follower forces has

been extended in two directions. First, the introduction of a time-delay in the angle of the follower
force such that its orientation depends on the state of the system at a previous (delayed) time
instead of the present time has been considered in various studies, e.g. Refs. [8–10]. The
mathematical models for such systems are delay-differential equations (DDEs), and the stability
analysis is complicated by the fact that such equations have transcendental characteristic
equations with an infinite number of roots (eigenvalues). Nevertheless, several stability theorems
have been formulated for such systems, including the Pontryagin, D-subdivision and tau-
decomposition methods [8,9]. Both single- and 2 dof undamped inverted pendulums with delayed
follower forces were considered in Ref. [9] whereas in Refs. [8,10] the effect of damping on the 2
dof system was analyzed. It was found in these studies that the presence of a very small time delay
can be enough to cause instability if the damping is small or nonexistent. The instability routes
are due to both the saddle–node and Hopf bifurcations as in the systems with nondelayed
follower forces.
The second direction that has been pursued has been to consider the effect of follower

forces with periodically varying magnitudes. This introduces time-periodic coefficients
(parametric excitation) to the ordinary differential equations and thus requires the use of
Floquet theory [11] for stability analysis. By computing the fundamental solution matrix
at the end of the principal period of excitation ( either by direct numerical integration or
symbolically in terms of parameters as in Refs. [12,13]), the Floquet transition matrix is obtained
whose eigenvalues are the Floquet multipliers which must lie within the unit circle in the complex
plane for asymptotic stability. Butcher and Sinha [12] computed the stability chart for the 2 dof
inverted pendulum problem both numerically and symbolically and showed the existence of
parametric resonance instability regions as well as a third type of instability due to period
doubling. This ‘‘flip bifurcation’’ is associated with Floquet multipliers leaving the unit circle at
�1 in the complex plane and does not occur for time-invariant systems [11]. It was shown in Ref.
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[12] that the effect of damping is to ‘‘lift’’ the instability regions due to parametric excitation, thus
enlarging the stability region.
The simultaneous effect of both time-delay and parametric excitation on elastic systems

with nonconservative follower forces has not been previously considered as the associated
time-periodic DDEs incorporate both time-delay and periodic coefficients. An infinite-
dimensional extension of Floquet theory, however, does exist for such systems in which
the eigenvalues of the monodromy operator, or ‘‘infinite-dimensional Floquet transition
matrix’’, determine the stability. Recently, a few numerical techniques have been developed
to construct an approximate finite-dimensional version [14–16]. It was recently shown in
Ref. [14] that, by using shifted Chebyshev polynomials and the associated operational
matrices, the periodic DDE system can be reduced to a set of difference equations from
which a finite-dimensional approximation of the monodromy operator is found. For the
special case in which the delay and parametric periods are equal, this matrix defines a linear map
which transforms the Chebyshev coefficients of the state in the previous delay interval to the
Chebyshev coefficients of the state in the present delay interval. Therefore, the stability criteria is
that all the eigenvalues of this matrix should fall inside the unit circle in the complex plane. An
extension to the case where the parametric and delay periods are rationally related is also
available.
In this paper, this technique is used to analyze the stability of elastic columns with

nonconservative follower forces which contain both parametric excitation and time lag.
The stability charts for single and double inverted pendulums subjected to retarded
periodic follower forces are produced by applying the stability criteria described above.
The charts are shown for a variety of different parameter values for various amounts of
damping and angular positions of the follower force. The previously reported results for
the cases where either the parametric excitation or the time-delay vanishes are verified. It is
shown that as the magnitude of periodic excitation is increased, the stable region is decreased as a
result of the effect of parametric resonances. The numerical stability results are verified by the
analogous analytical stability boundaries of a delayed Mathieu equation. It is shown that this
technique offers an efficient and accurate way to study the stability properties of this class of
systems.
2. Equations of motion

2.1. Elastic column

Fig. 1 shows an elastic column with elastic modulus EI, density r; and length l, which is
clamped at the base. It is subjected to a nonconservative follower load at the opposited end whose
magnitude consists of both constant and time periodic components and which acts at an angle
proportional (by a constant g) to the slope at that end at a previous time t � t: P1 and P2 cosot

are the constant and time-periodic parts of the follower force, o is the parametric forcing
frequency, and t is a constant delay period. Neglecting shear and inertia effects and assuming
small displacements and linear viscous damping, the equation of motion for the deflection yðx; tÞ
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Fig. 1. An elastic column subjected to a periodic retarded follower force.
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can be derived as

EIy0000ðx; tÞ þ ðP1 þ P2 cosotÞy00ðx; tÞ þ r €yðx; tÞ þ c _yðx; tÞ ¼ 0; (1)

yð0; tÞ ¼ 0; y0ð0; tÞ ¼ 0;

y00ðl; tÞ ¼ 0; ðP1 þ P2 cosotÞðy0ðl; tÞ � gy0ðl; t � tÞÞ ¼ �EIy000ðl; tÞ:

Eq. (1) is a linear partial differential equation with time-periodic coefficients with a
boundary condition which contains both time-periodic coefficients and time-delay.
Because the stability analysis of this system is extremely difficult, we instead choose to
analyze discretized versions of the problem which give rise to ODEs with time-periodic coefficients
and time-delay for which an infinite-dimensional version of Floquet theory may be applied.
Therefore, we will consider both single and double inverted pendulum approximations to the
elastic column.
2.2. A single inverted pendulum

A single dof inverted pendulum subjected to a parametrically excited and retarded follower
force is first considered. The diagram of the mechanical system is shown in Fig. 2(a) in which qðtÞ

denotes the angle coordinate (measured from vertical position), g is the load direction parameter,
k is the torsional stiffness, c is the damping constant, m is the mass at the end of the weightless
beam which has the length l, P1 and P2 are the constant and time-periodic parts of the follower
force, and o is the parametric forcing frequency. The equation of motion for this system can be
derived as

ml2 €qðtÞ þ kqðtÞ þ c _qðtÞ � ðP1 þ P2 cosotÞl sinðqðtÞ � gqðt � tÞÞ ¼ 0: (2)

The linearized equation about q ¼ 0 is

ml2 €qðtÞ þ c _qðtÞ þ ðk � ðP1 þ P2 cosotÞlÞqðtÞ þ ðP1 þ P2 cosotÞlgqðt � tÞ ¼ 0: (3)
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Fig. 2. (a) A simple inverted pendulum, (b) a double inverted pendulum subjected to periodic retarded follower force.
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Normalizing the delay period t to 1 by defining a new time coordinate t̂ such that t ¼ tt̂ and
denoting x1 ¼ q; x2 ¼ _q; we rewrite Eq. (3) into state-space form as

_x1

_x2

 !
¼

0 1

�t̂2ð1� P̂1 � P̂2 cosott̂Þ �t̂c̄

" #
x1

x2

 !

þ
0 0

�t̂2ðP̂1 þ P̂2 cosott̂Þg 0

" #
x1ðt̂ � 1Þ

x2ðt̂ � 1Þ

 !
; ð4Þ

where P̂1 ¼ P1l=k; P̂2 ¼ P2l=k; t̂ ¼ at; a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ðml2Þ

q
; c̄ ¼ ac=k:

This is similar to the single dof problem studied in Ref. [9]. However, in this case both periodic
excitation and time-delay effects are taken into consideration, whereas only time-delay was
present in Ref. [9].

2.3. Double inverted pendulum

Next, we consider a two dof double inverted pendulum subjected to a periodic follower
force with time delay. Fig. 2(b) shows the mechanical system. The system has two rigid
weightless bars with equal lengths l with two masses m1 ¼ 2m and m2 ¼ m attached at their ends.
q1ðtÞ and q2ðtÞ are the angular coordinates, c1 and c2 are the damping constants, k is a torsional
spring constant, g is the load direction parameter, P1 and P2 are the constant and time-periodic
part of the follower force and o is the parametric forcing frequency. The equations of motion can
be expressed as

3ml2 €q1ðtÞ þ ml2 cosðq2ðtÞ � q1ðtÞÞ €q2ðtÞ � sinðq2ðtÞ � q1ðtÞÞ _q2ðtÞ
2

þ ðc1 þ c2Þ _q1ðtÞ � c2 _q2ðtÞ þ 2kq1ðtÞ � kq2ðtÞ � ðP1 þ P2 cosotÞl sinðq1ðtÞ � gq2ðt � tÞÞ ¼ 0; ð5aÞ

ml2 cosðq2ðtÞ � q1ðtÞÞ €q1ðtÞ þ ml2 €q2ðtÞ þ sinðq2ðtÞ � q1ðtÞÞ _q1ðtÞ
2

� c2 _q1ðtÞ þ c2 _q2ðtÞ � kq1ðtÞ þ kq2ðtÞ � ðP1 þ P2 cosotÞl sinðq2ðtÞ � gq2ðt � tÞÞ ¼ 0: ð5bÞ
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The linearized equations of motion about the q1 ¼ q2 ¼ 0 equilibrium position are

3ml2 €q1ðtÞ þ ml2 €q2ðtÞ þ ðc1 þ c2Þ _q1ðtÞ � c2 _q2ðtÞ þ 2kq1ðtÞ � kq2ðtÞ

� ðP1 þ P2 cosotÞlq1ðtÞ þ ðP1 þ P2 cosotÞlgq2ðt � tÞ ¼ 0; ð6aÞ

ml2 €q1ðtÞ þ ml2 €q2ðtÞ � c2 _q1ðtÞ þ c2 _q2ðtÞ � kq1ðtÞ þ kq2ðtÞ

� ðP1 þ P2 cosotÞlq2ðtÞ þ ðP1 þ P2 cosotÞlgq2ðt � tÞ ¼ 0: ð6bÞ

Normalizing the delay period to 1 via t ¼ tt̂ and denoting xT ¼ ðx1 x2 x3 x4Þ ¼ ðq1 q2 _q1 _q2Þ;
Eqs. (6a) and (6b) are rewritten into state-space form (following premultiplication by the inverse
of the mass matrix) as

_x1

_x2

_x3

_x4

0
BBBBB@

1
CCCCCA ¼

0 0 1 0

0 0 0 1

�t̂2ð1:5� 0:5P̂1 � 0:5P̂2 cosott̂Þ �t̂2ð�1þ 0:5P̂1 þ 0:5P̂2 cosott̂Þ �t̂ð0:5c̄1 þ c̄2Þ �t̂ð�c̄2Þ

�t̂2ð�2:5þ 0:5P̂1 þ 0:5P̂2 cosott̂Þ �t̂2ð2� 1:5P̂1 � 1:5P̂2 cosott̂Þ �t̂ð�0:5c̄1 � 2c̄2Þ �t̂ð2c̄2Þ

2
666664

3
777775

�

x1

x2

x3

x4

0
BBBBB@

1
CCCCCAþ

0 0 0 0

0 0 0 0

0 0 0 0

0 �t̂2ðP̂1 þ P̂2 cosott̂Þg 0 0

2
666664

3
777775

x1ðt̂ � 1Þ

x2ðt̂ � 1Þ

x3ðt̂ � 1Þ

x4ðt̂ � 1Þ

0
BBBBB@

1
CCCCCA; ð7Þ

where P̂1 ¼ P1l=k; P̂2 ¼ P2l=k; t̂ ¼ at; a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=ðmlÞ

p
; c̄1 ¼ ac1=k; c̄2 ¼ ac2=k:

Restricted versions of this problem were studied before in Refs. [8,9,12]. However, it should be
noted that in Refs. [8,9], there is no time-periodic excitation, while in Ref. [12] there is no time-
delay.
3. Method of analysis

Eqs. (4) and (7) have the same form as

_xðtÞ ¼ A1ðtÞxðtÞ þ A2ðtÞxðt � tÞ;

xðtÞ ¼ fðtÞ; t0 � tptpt0; (8)

where xðtÞ is the n � 1 state vector, AiðtÞ ¼ Aiðt þ TÞ; i ¼ 1; 2; are n � n periodic matrices with
principal period T, and fðtÞ is an n � 1 initial vector function in the interval ½t0 � t; t0	:
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We first consider the case where the parametric and delay periods are equal such that
T ¼ t: If UðtÞ is the fundamental solution matrix to the non-delay part of Eq. (8),
and CðtÞ is the fundamental solution matrix for the adjoint system such that
U�1ðtÞ ¼ CðtÞT; the infinite-dimensional monodromy operator for a periodic DDE system can
be defined as [17]

ðUxÞðtÞ ¼ UðtÞ xðTÞ þ

Z t

0

CðsÞTA2ðsÞxðsÞds

� �
; (9)

which maps continuous functions from the interval ½0;T	 back to the same interval, i.e.,
U :C½0;T 	 ! C½0;T 	:We will study the stability of U, that is, the eigenvalues of U. Therefore, it is
essential that U act from a vector space of functions back to the same vector space of functions.
On the other hand, U is the solution operator of the DDE, Eq. (8), in the sense that if xiðtÞ is a
solution on the interval t 2 ½i � 1; i	; then xiþ1ðtÞ ¼ ðU ~xiÞðt � iÞ is the solution on the interval
t 2 ½i; i þ 1	; where ~xiðsÞ ¼ xiðs � i þ 1Þ for s 2 ½0; 1	: Note that Eq. (9) reduces to a well-known
formula of the solution to an ODE system once A2ðtÞ � 0; in which case, U becomes a Floquet
transition matrix UðTÞ: This justifies the name for U—the delay Floquet transition matrix

(DFTM). If we directly integrate Eq. (8) from t0 to t, we obtain

xðtÞ ¼ xðt0Þ þ

Z t

t0

ðA1ðsÞxðsÞ þ A2ðsÞxðs � tÞÞds; (10)

where t0 is an arbitrary initial time. Normalizing the delay period to t ¼ 1 and setting the initial
time to t0 ¼ 0; we obtain the solution vector x1ðtÞ in the first interval ½0; 1	 as

x1ðtÞ ¼ x1ð0Þ þ

Z t

0

ðA1ðsÞxðsÞ þ A2ðsÞfðs � 1ÞÞds: (11)

Next, we expand x1ðtÞ;A1ðtÞ and A2ðtÞ and the initial function fðt � 1Þ in m shifted Chebyshev
polynomials of the first kind as

x1ðtÞ ¼ T̂
T
ðtÞm1; A1ðtÞ ¼ T̂

T
ðtÞF;

A2ðtÞ ¼ T̂
T
ðtÞD; fðt � 1Þ ¼ T̂

T
ðtÞm0;

xð0Þ ¼ T̂
T
ðtÞT̄ð1Þm0; 0ptp1; (12)

where T̂ðtÞ ¼ In 
 TðtÞ; In denotes the n � n identity matrix, TðtÞ ¼ fT�
0ðtÞT

�
1ðtÞ . . .T

�
m�1ðtÞg

T is an
m � l column vector of the shifted Chebyshev polynomials and 
 denotes the Kronecker product
operation; m1 and m0 are the nm � 1 Chebyshev coefficient vectors of the solution vector x1ðtÞ and
the initial function fðt � 1Þ; and F and D are the nm � n Chebyshev coefficients matrices of A1ðtÞ
and A2ðtÞ in the first interval ½0; 1	; respectively. The nm � nm matrix T̄ð1Þ is defined as

T̄ð1Þ ¼ ÎT̂
T
ð1Þ ¼ In 


1 . . . . . . 1

0 . . . . . . 0

..

. ..
. ..

. ..
.

0 . . . . . . 0

2
66664

3
77775

m�m

; (13)
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where I ¼ T̂
T
ðtÞÎ: Using the Chebyshev expansions in Eq. (12), Eq. (11) takes the form

T̂
T
ðtÞm1 ¼ T̂

T
ðtÞT̄ð1Þm0 þ

Z t

0

ðT̂
T
ðsÞFT̂

T
ðsÞm1 þ T̂

T
ðsÞDT̂

T
ðsÞm0Þds: (14)

Applying the integration and product operational matrices Ĝ and Q̂ defined in Ref. [13], we obtain

T̂
T
ðtÞm1 ¼ T̂

T
ðtÞT̄ð1Þm0 þ T̂

T
ðtÞĜ

T
Q̂Fm1 þ T̂

T
ðtÞĜ

T
Q̂Dm0 (15)

which can be simplified as

½I� Ĝ
T
Q̂F 	m1 ¼ ½T̄ð1Þ þ Ĝ

T
Q̂D	m0: (16)

For the ith interval ½i � 1; i	; the linear mapW which relates the Cheybshev coefficient vector mi to
that in the previous interval is given by inverting the first matrix above as

mi ¼ ½I� Ĝ
T
Q̂F 	

�1½T̄ð1Þ þ Ĝ
T
Q̂D	mi�1: (17)

Eq. (17) defines an truncated version of the infinite-dimensional Floquet transition matrix which is
given by

W ¼ ½I� Ĝ
T
Q̂F 	

�1½T̄ð1Þ þ Ĝ
T
Q̂D	: (18)

The stability of Eq. (8) is defined by the eigenvalues of W since it advances the solution forward
one period. For asymptotic stability, all the eigenvalues of W must lie within the unit circle. For
neutral stability, it is sufficient that only one (or a pair of complex) eigenvalue(s) lie(s) on the unit
circle. If the multiplicity of a critical eigenvalue on the unit circle is more than one, then the system
might be unstable.
We next consider the case where the forcing period is an integer multiple of the delay period,

i.e., T ¼ qt; q ¼ 2; 3; . . . : For simplicity, we start by finding the solution when T ¼ 2t: The
problem under consideration is still Eq. (8). Again, we normalize the time such that t ¼ 1: Since
the matrices A1ðtÞ and A2ðtÞ must be re-expanded in the second interval ½1; 2	; using the
relationship defined in Eq. (17), we have

m2 ¼ ½I� Ĝ
T
Q̂F2

	�1½T̄ð1Þ þ Ĝ
T
Q̂D2

	m1; (19)

where F2 and D2 are the coefficients of Chebyshev of the expansions of A1ðtÞ and A2ðtÞ in the
second interval ½1; 2	: Note that if we let

W2 ¼ ½I� Ĝ
T
Q̂F2

	�1½T̄ð1Þ þ Ĝ
T
Q̂D2

	 (20)

and denote theW matrix in the first interval ½0; 1	 asW1; then substituting Eqs. (16) and (20) into
Eq. (19), we obtain

m2 ¼W2m1 ¼W2W1m0 ¼Wm0: (21)

The entire stability matrix is therefore

W ¼W2W1 ¼ ½I� Ĝ
T
Q̂F2

	�1½T̄ð1Þ þ Ĝ
T
Q̂D2

	½I� Ĝ
T
Q̂F1

	�1½T̄ð1Þ þ Ĝ
T
Q̂D1

	; (22)
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where F1 and D1 are the coefficients of the Chebyshev expansions of A1ðtÞ and A2ðtÞ in
the first interval ½0; 1	: The stability of Eq. (8) for T ¼ 2t case will be determined by the
eigenvalues of Eq. (22).
The general formula of W matrix of Eq. (8) for T ¼ qt can be derived in the same way as

W ¼WqWq�1 . . .W2W1; (23)

where

Wi ¼ ½I� Ĝ
T
Q̂Fi

	�1½T̄ð1Þ þ Ĝ
T
Q̂Di

	: (24)
4. Stability results

4.1. The simple inverted pendulum

In this section, we present the stability charts for the simple and double inverted pendulums by
applying the stability criteria described in Section 3. We start with the simple inverted pendulum
case. The simplest case is when both the time-periodic and delay effects vanish (i.e. P2 ¼ t ¼ 0) in
which the state-space form of the linearized equation is

_x1

_x2

 !
¼

0 1

�a2ð1þ ðg� 1ÞP̂1Þ �ac̄

" #
x1

x2

 !
: (25)

(Note that the time coordinate has not been normalized in this case so that t ¼ t̂ and t̂ ¼ a:)
Eq. (25) is an ordinary differential equation with constant coefficients. The stability of this
system requires that 1þ ðg� 1ÞP̂140 and c̄40: Note that if g ¼ 1 then the size of P̂1 is irrelevant
for stability since the follower force does not do work. The stability chart in the ½P̂1; g	 plane is
shown in Fig. 3. The static instability route at the boundary is unaffected by the amount of
damping.
Fig. 3. Stability chart in P̂1 � g plane for the simple inverted pendulum where t ¼ P̂2 ¼ 0:
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Fig. 4. Stability charts for the simple inverted pendulum where g ¼ 1 and T ¼ t for various amounts of damping (c ¼ 0

in solid black region): (a) P̂2 ¼ 0; (b) P̂2 ¼ 0:2; (c) P̂2 ¼ 0:6; (d) P̂2 ¼ 1:2:
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When the time-delay is reinstated and we increase the magnitude of P̂2; these effects are shown
in Fig. 4 in the ½t̂=p; P̂1	 plane where T ¼ t and g ¼ 1 for different values of the damping
parameter c̄: The method in Section 3 was applied with m ¼ 55 Chebyshev polynomials. Note that
Fig. 4(a) shows the system with delay but no time-periodic component ðP̂2 ¼ 0Þ: This result for the
undamped case is the same as the one obtained in Ref. [9]. In Fig. 4(a) it is seen that a small
amount of time-delay can cause instability if the damping is small or zero. As we increase the
magnitude of the parametric excitation to P̂2 ¼ 0:2; 0:6 and 1.2, the stable region is decreased. In
addition, the stability boundaries for the damped ðc̄ ¼ 0:1; 0:5; 1:0Þ as well as the undamped case
are shown in each plot of Fig. 4. In general, it is seen that increasing the damping enlarges the
stable region.
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The stability effects in Fig. 4 can be explained more precisely by matching the format of Eq. (4)
with that of the delayed Mathieu equation

€x þ ðdþ 2� cos 2tÞx ¼ ðb þ 2� cos 2tÞxðt � pÞ: (26)

Note that Eq. (26) is slightly different from the delayed Mathieu equation analyzed in Ref. [18]
due to the time-periodic coefficient in the delayed value of x as well as in the non-delayed value.
Comparing Eq. (4) with T ¼ t and g ¼ 1 and the normalized state-space form

_x1

_x2

 !
¼

0 1

�p2ðdþ 2� cos 2pt̂Þ 0

" #
x1

x2

 !
þ

0 0

p2ðb þ 2� cos 2pt̂Þ 0

" #
x1ðt̂ � 1Þ

x2ðt̂ � 1Þ

 !
(27)

of Eq. (26), we find

d ¼ ðt̂=pÞ2ð1� P̂1Þ; b ¼ �ðt̂=pÞ2P̂1; 2� ¼ ðt̂=pÞ2P̂2: (28a2c)

The stability charts of Eq. (26) in the ½d; b	 plane for several parameters values of � are shown in
Fig. 5. As shown in Ref. [16], the straight boundaries with slopes of �1 for � ¼ 0 are shifted to the
Fig. 5. Stability charts in the d� b plane for the delayed Mathieu Eq. (26): (a) � ¼ 0; (b) � ¼ 0:1; (c) � ¼ 0:5; (d) � ¼ 0:9:
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left or right as � is increased while retaining the same slope. The intercepts of these boundaries
with the ðb ¼ 0Þ boundary in Fig. 5(a) (which becomes more curved as � increases) are related to
the location of the stability boundaries in the non-delayed Mathieu equation. The analytical form
of the boundaries in Fig. 5 can therefore be used to understand and verify the numerical plots in
Fig. 4. For example, Fig. 4(a) with P̂2 ¼ 0 corresponds to � ¼ 0 in Fig. 5(a). Each of the stability
boundaries of slope þ1 in Fig. 5(a) is due to saddle–node bifurcation and corresponds to a vertical
stability boundary in Fig. 4(a), while each of the stability boundaries of slope �1 in Fig. 5(a) (also
due to saddle–node bifurcation) corresponds to a curved (parabolic) stability boundary in Fig.
4(a). As described in Ref. [9], these boundaries in Fig. 5(a) are given as d ¼ ð�1Þnb þ n2; n ¼

0; 1; 2; . . . : Using Eq. (28), the corresponding boundaries in Fig. 4(a) are therefore derived as

t̂=p ¼ n; n even;

ðt̂=pÞ2ð1� 2P̂1Þ ¼ n2; n odd: ð29Þ

Finally, the b ¼ 0 boundary in Fig. 5(a) which destabilizes due to Hopf bifurcation translates to
P̂1 ¼ 0 in Fig. 4(a). As � is increased in Figs. 5(b–d), the þ1 slope boundaries have a þ1 eigenvalue
of theWmatrix (indicating fold bifurcation) and the �1 slope boundaries have a �1 eigenvalue of
the W matrix (indicating flip bifurcation). The bifurcation properties of the corresponding
boundaries in Figs. 4(b–d) are still preserved.
In Fig. 4(b) when P̂2 ¼ 0:2; we find each of the curved boundaries in Fig. 4(a) is broken at the

point when t̂ ¼ ip; i ¼ 1; 3; . . . : The equations of the first two curved boundaries that intersect
P̂1 ¼ 0 near t̂ ¼ p can be found for � ¼ 0:1 from Eq. (28c), which corresponds to the stability
chart for the delayed Mathieu equation in Fig. 5(b). Since the boundary d ¼ �b þ 1 in Fig. 5(a)
has split into two lines which have slope �1 with b ¼ 0 intercepts of d1b ¼ 0:795125 and d2b ¼

1:194874; the equations of these two lines in Fig. 5(b) are

d ¼ �b þ d1b ¼ �b þ 0:795125; d ¼ �b þ d2b ¼ �b þ 1:194874: (30a,b)

Substituting Eqs. (28a) and (28b) into Eqs. (30a) and (30b), we obtain the equations of the first
two parabolic boundaries in Fig. 4(b) as

t̂
p

� �2

ð1� 2P̂1Þ ¼ d1b;2b: (31)

For purpose of comparison, we plot these analytical boundaries (Eq. (31)) along with the
numerical boundaries in a small region around t̂ ¼ p in Fig. 6(a) in which it can be seen that the
results approximately match each other when jt̂� pj is small. As is expected, the two boundaries
diverge as this quantity becomes large.
As � is increased the change of the stable region in the ðb; dÞ plane can be seen in Fig. 5(c) and

(d). Fig. 5(d) with � ¼ 0:9 can similarly be used to obtain the two parabolic boundary equations in
Fig. 4(b) near t̂ ¼ 3p: Since the boundary d ¼ �b þ 9 in Fig. 5(a) has split into two lines with
slope �1 and intercepts of d1b ¼ 9:118760 and d2b ¼ 9:28905 with the broken lines, substituting
these values into Eq. (31), we obtain the equations of second two parabolic lines in Fig. 4(b).
In Fig. 6(b), we plot the analytical boundaries together with the numerical ones in a small
region around t̂ ¼ 3p: The analytical boundaries are accurate for a wider range of this parameter
in this case.
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Fig. 6. Comparison of the analytical boundaries (Eq. (31)—dashed) with the numerical boundaries (solid) for g ¼
1; c ¼ 0; P̂2 ¼ 0:2 near (a) t̂ ¼ p; (b) t̂ ¼ 3p:
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The stability charts for two special values of t̂ðt̂ ¼ p; t̂ ¼ 3pÞ in the ½P̂1; P̂2	 plane with g ¼ 0
(which surpresses the time-delay term in Eq. (4)) and g ¼ 1 are shown in Fig. 7 where m ¼ 55:
Figs. 7(a) and (c) correspond to the g ¼ 0 case when t̂ ¼ p and t̂ ¼ 3p; respectively. These plots
are similar to those for the non-delayed Mathieu equation (i.e. Eq. (26) with the right-hand side
equal to zero) in the ðd; �Þ plane. The fact that the plots are reversed with respect to P̂1 follows
from Eq. (28a). The boundary intersecting P̂2 ¼ 0 at P̂1 ¼ 1 is the same fold (saddle–node)
bifurcation boundary that was seen in Fig. 3, while the parametric resonance-induced unstable
regions to the left are due to an alternating sequence of fold and flip bifurcations for which one of
the Floquet multipliers is þ1 and �1; respectively. Figs. 7(b) and (d) correspond to g ¼ 1 with
t̂ ¼ p and t̂ ¼ 3p; respectively. The stable region is largely decreased compared with g ¼ 0 case in
(a) and (b) due to the time-delay. In addition, the damping effects with ðc̄ ¼ 0:1; 0:5; 1:0Þ are also
shown. If P̂2 is fixed to one of the four values in Fig. 4 and P̂1 is varied in Figs. 7(b) or (d), the
same stability boundaries are intersected as in Fig. 4 if t̂=p equals 1 or 3, respectively. Hence, these
figures can be used to better understand the charts in Fig. 4 near t̂ ¼ p and 3p:
The stability charts for the T ¼ 2t case in the ½t̂=p; P̂1	 plane with g ¼ 1 for two values of P̂2 are

shown in Fig. 8 where m ¼ 55 Chebyshev polynomials were used. Here, the stable region
corresponds to a spectral radius of matrix W in Eq. (22) less than unity. Compared to the T ¼ t
case of Fig. 4(b,c), the T ¼ 2t case shows similar stability behaviors. Again, the damping effects
are included in each figure.

4.2. The double inverted pendulum

The double inverted pendulum is more complicated than the simple inverted pendulum as the
dof of the system becomes 2 involving 4 simultaneous DDEs after being changed into state-space
form in Eq. (7). However, we shall see that there are still similar stability effects with those
obtained in simple inverted pendulum case.
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Fig. 7. Stability charts for the simple inverted pendulum for various amounts of damping (c ¼ 0 in solid black region):

(a) g ¼ 0; t̂ ¼ p; (b) g ¼ 1; t̂ ¼ p; (c) g ¼ 0; t̂ ¼ 3p; (d) g ¼ 1; t̂ ¼ 3p:
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We begin with the simplest case when P̂2 and t in Eq. (7) vanish, which yields a set of time-
invariant ODEs whose stability properties have been previously analyzed in detail [2–5,12]. The
traditional plot in the ðP̂1; gÞ plane when c̄ ¼ c̄1 ¼ c̄2 ¼ 0 as well as for 3 other values of c̄ are
reproduced in Fig. 9. The middle curved line which depends on the amount of damping is unstable
due to Hopf bifurcation which represents dynamic failure due to flutter [3,12]. The other curved
lines represent static failure mode due to divergence (saddle–node bifurcation). As is well-known
for nonconservative systems, it is seen here that increasing the damping does not always increase
the stable region [5].
Corresponding to Fig. 4 for the simple inverted pendulum we produce stability charts of the

double inverted pendulum with time-delay for several values of P̂2 in the ½t̂=p; P̂1	 plane in Fig. 10
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Fig. 9. Stability chart in the P̂1 � g plane for the double inverted pendulum where P̂2 ¼ t ¼ 0 for various amounts

of damping.

Fig. 8. Stability charts for the simple inverted pendulum where T ¼ 2t; g ¼ 1 for various amounts of damping (c ¼ 0 in

solid black region): (a) P̂2 ¼ 0:2; (b) P̂2 ¼ 0:6:
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when T ¼ t; g ¼ 1; and m ¼ 55 Chebyshev polynomials were used. Note that Fig. 10(a) (without
parametric excitation) shows the same results that were previously obtained in Refs. [8–10]. As we
increase P̂2 from 0 to 0.2, the stable region is seen to decrease. In addition, the boundary lines of
the vertical bars below P̂1 ¼ 0 in Fig. 10(b–d) have alternating bifurcation properties. The left-
hand side boundaries corresponds to when the spectral radius of the W matrix is þ1 while the
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Fig. 10. Stability charts for the double inverted pendulum where g ¼ 1 and T ¼ t for various amounts of damping

(c ¼ 0 in solid black region): (a) P̂2 ¼ 0; (b) P̂2 ¼ 0:05; (c) P̂2 ¼ 0:1; (d) P̂2 ¼ 0:2:
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ones on the right-hand side have a spectral radius of �1: These show fold and flip bifurcation
instability properties, respectively, in the presence of the parametric excitation. In addition, on
either side of the P̂1 ¼ 0 line, the curved line on the top of and bottom of each column
corresponds to flip bifurcation. Again, in each plot of Fig. 10, the damping effects for c̄ ¼

0:1; 0:5; 1:0 are included.
Fig. 11 shows the effect of varying the angle of load g when t̂ ¼ p for the double inverted

pendulum in the ½P̂1; P̂2	 plane where m ¼ 55: The stability region in Fig. 11(a) for which
the equations of motion are a set of time-periodic ODEs, was first obtained both numerically
and symbolically in Ref. [12]. Comparing with the stability charts in Fig. 7, we see that with
increasing g the similar effects of a decreasing stable region occur again. This further shows that
introducing the time-delay causes instability. Again, the damping effects are taken into
consideration in these plots.
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Fig. 11. Stability charts for the double inverted pendulum where t̂ ¼ p for various amounts of damping (c ¼ 0 in solid

black region): (a) g ¼ 0; (b) g ¼ 0:2; (c) g ¼ 0:5; (d) g ¼ 1:
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Finally, when T ¼ 2t; the stability charts for the double inverted pendulum in the ½t̂=p; P̂1	

plane for two values of P̂2ðP̂2 ¼ 0:05; P̂2 ¼ 0:1Þ with g ¼ 1 are shown in Fig. 12. Again, m ¼ 55
polynomials were used. They show similar stability behaviors with the ones obtained in Fig. 8
when T ¼ t under various damping effects.
5. Conclusion

Stability charts of discretized elastic columns with follower forces which are subjected to both
parametric excitation and time-delay effects are first presented by using a shifted Chebyshev-based
method. This is possible because the original dynamic system equation can be reduced into a set of
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Fig. 12. Stability charts for the double inverted pendulum where T ¼ 2t; g ¼ 1 for various amounts of damping (c ¼ 0

in solid black region): (a) P̂2 ¼ 0:05; (b) P̂2 ¼ 0:1:
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difference equations from which the truncated version of ‘‘the infinite-dimensional Floquet
transition matrix’’ is found. Therefore, the traditional unit circle stability criteria can be directly
applied to this matrix.
A parametrically excited simple pendulum and a double inverted pendulum subjected to a

retarded periodic follower force were studied. The results with no delay effects or parametric
excitation are exactly the same as the ones reported previously. The results with both parametric
excitation and time-delay, which are combined for the first time in this study, show that both
effects are generally destabilizing in nature and are thus unwanted. In addition, damping effects
and critical values for load direction are taken into consideration. More important, this method
explains the fundamental stability phenomena related to delay differential equations (DDEs). It is
expected that this method can be applied to solve a wide class of engineering problems which can
be modeled as periodic DDEs.
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